NCCN Guidelines™ Version 1.2011 Panel Members
Malignant Pleural Mesothelioma

*David S. Ettinger, MD/Chair †
 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Wallace Akerley, MD †
 Huntsman Cancer Institute at the University of Utah

Hossein Borghaei, DO, MS † ‡
 Fox Chase Cancer Center

Andrew Chang, MD ¶
 University of Michigan Comprehensive Cancer Center

Richard T. Cheney, MD ≠
 Roswell Park Cancer Institute

Lucian R. Chirieac, MD ≠
 Dana-Farber/Brigham and Women's Cancer Center

Thomas A. D’Amico, MD ¶
 Duke Comprehensive Cancer Center

Todd L. Demmy, MD ¶
 Roswell Park Cancer Institute

Ramaswamy Govindan, MD †
 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Frederic W. Grannis, Jr., MD ¶
 City of Hope Comprehensive Cancer Center

Leora Horn, MD, MSc †
 Vanderbilt-Ingram Cancer Center

Thierry M. Jahan, MD † ‡
 UCSF Helen Diller Family Comprehensive Cancer Center

Anne Kessinger, MD †
 UNMC Eppley Cancer Center at The Nebraska Medical Center

Ritsuko Komaki, MD §
 The University of Texas MD Anderson Cancer Center

Feng-Ming (Spring) Kong, MD, PhD, MPH §
 University of Michigan Comprehensive Cancer Center

Mark G. Kris, MD †
 Memorial Sloan-Kettering Cancer Center

* Lee M. Krug, MD †
 Memorial Sloan-Kettering Cancer Center

Inga T. Lennes, MD †
 Massachusetts General Hospital Cancer Center

Billy W. Loo, Jr., MD, PhD §
 Stanford Comprehensive Cancer Center

Renato Martins, MD †
 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance

Janis O’Malley, MD ‡
 University of Alabama at Birmingham Comprehensive Cancer Center

Raymond U. Osarogiagbon, MD †
 St. Jude Children’s Research Hospital/University of Tennessee Cancer Institute

Gregory A. Otterson, MD †
 Arthur G. James Cancer Hospital & Richard J. Solove Research Institute at The Ohio State University

Jyoti D. Patel, MD ‡
 Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Mary Pinder-Schenck, MD †
 H. Lee Moffitt Cancer Center & Research Institute

Katherine M. Pisters, MD †
 The University of Texas MD Anderson Cancer Center

Karen Reckamp, MD, MS † ‡
 City of Hope Comprehensive Cancer Center

Gregory J. Riely, MD, PhD †
 Memorial Sloan-Kettering Cancer Center

Eric Rohren, MD, PhD φ
 The University of Texas MD Anderson Cancer Center

Scott J. Swanson, MD ¶
 Dana-Farber/Brigham and Women’s Cancer Center

Douglas E. Wood, MD ¶
 Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance

Stephen C. Yang, MD ¶
 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

NCCN
 Kristina Gregory, RN, MSN
 Miranda Hughes, PhD

† Medical Oncology
¶ Surgery/Surgical oncology
§ Radiation oncology/Radiotherapy
≠ Pathology
φ Diagnostic/
 Interventional Radiology
* Writing Committee Member
The NCCN Guidelines™ are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2010.
NCCN Guidelines™ Version 1.2011 Updates
Malignant Pleural Mesothelioma

Summary of the changes in the 1.2011 version of the Malignant Pleural Mesothelioma Guidelines from the 1.2010 version include:

MPM-2
- FDG-PET changed to PET-CT. Note also added that this should be performed prior to pleurodesis.
- Clinical stage I-III: note added that this is epithelial or mixed histology.

MPM-3
- Clinical stage I, medically inoperable: Chemotherapy was added as a treatment option.

MPM-4
- Performance status removed from clinical stage.
- Post-surgical therapy: Sequential RT followed by chemotherapy added as an option for adjuvant treatment.

MPM-B
- Bullet 2 is new: “For patients being considered for surgery, a single port thoracoscopy on the line of the potential incision is recommended.”
- Bullet 5: “low nodal burden” changed to “no N2 lymph node involvement” and “EPP is the best option” changed to “EPP may be the best option.”

MPM-C 1 of 3
- General Principles
 - Bullet 3: “after EPP” was added to the end of the statement.
- Radiation Dose and Volume
 - Bullet 5: “For prophylactic radiation after surgical procedure...” was changed to “For prophylactic radiation to surgical sites...”
 - Bullet 7: The following sentence was added, “RT under such circumstances or after pleurectomy/decortication may be considered with caution under strict dose limits of organs at risk or IRB approved protocols.”
INITIAL EVALUATION

Recurrent pleural effusion and/or pleural thickening →
- CT chest with contrast
- Thoracentesis for cytologic assessment
- Pleural biopsy (e.g., Abrahms needle, CT-guided core biopsy, thoracoscopic VATS biopsy [preferred], or open biopsy)
- Talc pleurodesis or pleural catheter, if required for management of pleural effusion
- Serum mesothelin-related peptide (SMRP) and osteopontin levels optional

Malignant pleural mesothelioma (MPM) confirmed →
Management by a multidisciplinary team with experience in MPM recommended
See Pretreatment Evaluation (MPM-2)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Malignant Pleural Mesothelioma

PATHOLOGIC DIAGNOSIS

- Malignant pleural mesothelioma

PRETREATMENT EVALUATION

- Chest/abdominal CT with contrast
- PET-CT\(^a\)
- Mediastinoscopy or EBUS
- FNA of mediastinal lymph nodes (optional)
- Laparoscopy to rule out transdiaphragmatic extension (optional)
- Chest MRI (optional)
- Consider VATS if suspicion of contralateral disease

CLINICAL ASSESSMENT

- Clinical stage I-III and Epithelial or Mixed histology
 - See Surgical Evaluation (MPM-3)
- Clinical stage IV or Sarcomatoid histology
 - Chemotherapy\(^a\)

\(^a\)Should be performed before any pleurodesis.

\(^b\)See Principles of Chemotherapy (MPM-A).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines™ Version 1.2011
Malignant Pleural Mesothelioma

<table>
<thead>
<tr>
<th>CLINICAL STAGE</th>
<th>SURGICAL EVALUATION</th>
<th>CLINICAL ASSESSMENT</th>
<th>TREATMENT</th>
</tr>
</thead>
</table>
| Clinical stage I | • PFTs
• Quantitative V/Q
• Cardiac stress test | Operable | Surgical resection\(^c\) |
| | | Medically inoperable | Observation for progression or Chemotherapy\(^b\) |

| Clinical stage II-III | • PFTs
• Quantitative V/Q
• Cardiac stress test | Operable | See Initial Treatment MPM-4 |
| | | Medically inoperable | Chemotherapy\(^b\) |

\(^b\)See Principles of Chemotherapy (MPM-A).
\(^c\)See Principles of Surgical Resection (MPM-B).

Note:
All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Malignant Pleural Mesothelioma

Clinical Stage II-III

<table>
<thead>
<tr>
<th>Medical Operable</th>
<th>Induction Therapy</th>
<th>Surgical Exploration</th>
<th>Resectable by pleurectomy/decortication or extrapleural pneumonectomy</th>
<th>Hemithoracic radiation after extrapleural pneumonectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>Induction chemotherapy with pemetrexed and cisplatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>Surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unresectable

- Adjuvant chemotherapy or RT
- Chemotherapy
- RT
- Chemotherapy

Notes:
- All recommendations are category 2A unless otherwise indicated.
- Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

References:
- See Principles of Chemotherapy (MPM-A).
- See Principles of Surgical Resection (MPM-B).
- See Principles of Radiation Therapy (MPM-C).
PRINCIPLES OF CHEMOTHERAPY

FIRST-LINE COMBINATION CHEMOTHERAPY REGIMENS

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pemetrexed 500 mg/m² day 1
Cisplatin 75 mg/m² day 1</td>
<td>Administered every 3 weeks (category 1)<sup>1</sup></td>
</tr>
<tr>
<td>Pemetrexed 500 mg/m² day 1
Carboplatin AUC 5 day 1</td>
<td>Administered every 3 weeks<sup>2,3</sup></td>
</tr>
<tr>
<td>Gemcitabine 1000-1250 mg/m² day 1, 8, 15
Cisplatin 80-100 mg/m² day 1</td>
<td>Administered in 3-4 week cycles<sup>4,5</sup></td>
</tr>
<tr>
<td>Pemetrexed 500 mg/m² every 3 weeks<sup>6</sup></td>
<td></td>
</tr>
<tr>
<td>Vinorelbine 25-30 mg/m² weekly<sup>7</sup></td>
<td></td>
</tr>
</tbody>
</table>

SECOND-LINE CHEMOTHERAPY

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pemetrexed (if not administered as first-line)<sup>8</sup></td>
<td></td>
</tr>
<tr>
<td>Vinorelbine<sup>9</sup></td>
<td></td>
</tr>
<tr>
<td>Gemcitabine</td>
<td></td>
</tr>
</tbody>
</table>

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SURGICAL RESECTION

- Surgical resection should be performed on carefully evaluated patients by board certified thoracic surgeons.
- For patients being considered for surgery, a single port thoracoscopy on the line of the potential incision is recommended.
- The goal of surgery is complete gross cytoreduction of the tumor. In cases where this is not possible such as multiple sites of chest wall invasion, surgery should be aborted.
- The surgical choices are (1) pleurectomy/decortication (P/D) which is defined as complete removal of the pleura and all gross tumor; and (2) extrapleural pneumonectomy (EPP) which is defined as en-bloc resection of the pleura, lung, ipsilateral diaphragm, and often pericardium. A mediastinal node dissection should be performed.
- For early disease (confined to the pleural envelope, no N2 lymph node involvement) with favorable histology (epithelioid) in good risk patients, EPP may be the best option. For advanced disease (high nodal disease, areas of local invasion), mixed histology, and/or high-risk patients, pleurectomy/decortication may be a better choice.
- After recovery from surgery, patients should be referred for adjuvant therapy which may include chemotherapy and radiation therapy depending on whether any preoperative therapy was used and on the pathological analysis of the surgical specimen.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
General Principles

- All patients should be evaluated by radiation oncologists, surgeons, medical oncologists, diagnostic imaging specialists, and pulmonologists for a multimodality treatment recommendation.

- The best timing of delivering RT after surgical intervention and/or in conjunction with chemotherapy, should be discussed in a multidisciplinary team.

- For patients with resectable MPM, adjuvant RT is recommended after EPP.\(^1\)\(^-\)\(^6\)

- The goal of adjuvant RT is to improve local control.

- RT can be used to prevent instrument-tract recurrence after pleural intervention.

- RT is an effective palliative treatment for relief of chest pain associated with mesothelioma.

- After extrapleural pneumonectomy, adjuvant RT significantly reduces the local recurrence rate. When there is limited or no resection of disease, delivery of high-dose RT to the entire hemithorax in the setting of an intact lung has not been shown to be associated with significant survival benefit, and the toxicity is significant.\(^1\),\(^5\),\(^6\) RT under such circumstances or after pleurectomy/decortication may be considered with caution under strict dose limits of organs at risk or IRB approved protocols.

- Acronyms and abbreviations related to RT are the same as listed in the principles of RT for non-small cell lung cancer.

See NCCN Non-Small Cell Lung Cancer Guidelines.

Radiation Dose and Volume

- The dose of radiation should be based on the purpose of the treatment.

 See Recommended Doses for Conventionally Fractionated Radiation Therapy MPM-C 2 of 3.

- The dose of radiation for adjuvant therapy should be 50 – 60 Gy in 1.8-2.0 Gy based on the margin status. A dose of 54 Gy to the entire hemithorax, the thoracotomy incision, and sites of chest drains was tolerated.\(^6\) The dose of adjuvant radiation appeared to significantly influence overall results. Those who receive doses higher than 40 Gy might survive longer than those who receive doses less than 40 Gy \((P = 0.001)\).\(^1\)

- A dose \(\geq 60\) Gy should be delivered to macroscopic residual tumors, if the doses to adjacent normal structures are limited to their tolerances. In addition to covering the surgical bed within the thorax, the volume of postoperative radiation should also include the surgical scars and biopsy tracks in the chest wall.\(^7\)\(^-\)\(^9\)

- Daily doses of 4 Gy appear to be more efficacious than fractions of less than 4 Gy in providing relief from chest pain associated with mesothelioma,\(^8\),\(^10\) although the optimal daily and total dose of RT for palliative purposes remain unclear.

- For prophylactic radiation to surgical sites, a total dose of 21 Gy \((3 \times 7\) Gy\) is recommended.\(^7\),\(^11\) For patients with residual tumors, some experienced investigators have used brachytherapy or intraoperative external beam radiation in combination with surgery.

See Radiation Techniques MPM-C 2 of 3

See References MPM-C 3 of 3
PRINCIPLES OF RADIATION THERAPY (2 of 3)

Recommended Doses for Conventionally Fractionated Radiation Therapy

<table>
<thead>
<tr>
<th>Treatment type</th>
<th>Total dose</th>
<th>Fraction size</th>
<th>Treatment duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>45-50 Gy</td>
<td>1.8-2 Gy</td>
<td>4-5 weeks</td>
</tr>
<tr>
<td>Postoperative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative margins</td>
<td>50-54 Gy</td>
<td>1.8-2 Gy</td>
<td>4-5 weeks</td>
</tr>
<tr>
<td>Microscopic-macroscopic positive margins</td>
<td>54-60 Gy</td>
<td>1.8-2 Gy</td>
<td>5-6 weeks</td>
</tr>
<tr>
<td>Palliative</td>
<td>20-40 Gy</td>
<td>≥ 4 Gy</td>
<td>1-2 weeks</td>
</tr>
<tr>
<td>Chest wall pain from recurrent nodules</td>
<td>30 Gy</td>
<td>3 Gy</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Multiple brain or bone metastasis</td>
<td>21 Gy</td>
<td>7 Gy</td>
<td>1-2 weeks</td>
</tr>
</tbody>
</table>

Radiation Techniques

- Use of modern radiation technology (such as 4DCT, IMRT, IGRT, tomotherapy and proton therapy with sophisticated radiation planning and delivery) is the preferred choice based on comprehensive consideration of target coverage and clinically relevant normal tissue tolerance.
- CT simulation guided planning with conventional photon/electron RT is recommended. IMRT is a promising treatment technique that allows a more conformal high-dose RT and improved coverage to the hemithorax. When IMRT is applied, the NCI/ASTRO IMRT guidelines (http://www.astro.org/Research/ResearchHighlights/documents/Imrt.pdf) should be followed strictly. Special attention should be paid to minimize radiation to the contralateral lung, as the risk of fatal pneumonitis with IMRT is excessively high when strict limits are not applied. The mean lung dose should be kept as low as possible, preferably < 8.5 Gy. The low dose volume should be minimized.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF RADIATION THERAPY (3 of 3) - References

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Table 1. International Mesothelioma Interest Group (IMIG) Staging System for Diffuse Malignant Pleural Mesothelioma

<table>
<thead>
<tr>
<th>Stage Grouping</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T1, T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>T4</td>
<td>Any N</td>
<td>M0</td>
</tr>
<tr>
<td>Any T</td>
<td>Any N</td>
<td>Any N</td>
<td>M0</td>
</tr>
</tbody>
</table>

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by Springer Science and Business Media LLC (SBM). (For complete information and data supporting the staging tables, visit www.springer.com.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Overview

Mesothelioma is a rare cancer that is estimated to occur in about 2,500 people in the United States every year.\(^1\) Although mesothelioma can also occur in the peritoneum and pericardium, this NCCN guideline focuses on malignant pleural mesothelioma (MPM), which is the most common type of mesothelioma. The disease is deadly and difficult to treat; median overall survival is only about 1 year. MPM occurs mainly in older men (median age, 72 years) who have been exposed to asbestos, although it occurs decades after exposure (20-40 years later).\(^2,3\) The incidence of MPM is leveling off in the United States, because asbestos use has been restricted since the 1970s; however, the incidence is still increasing in other countries such as Western Europe and Australia.\(^4-7\) Although most mesothelioma is linked to asbestos exposure, reports suggest that radiotherapy may also cause mesothelioma.\(^8-11\) The histologic subtypes of mesothelioma include epithelioid (most common), biphasic or mixed, and sarcomatoid.\(^1\) The NCCN Non-Small Cell Lung Cancer panel developed this new guideline on MPM for 2010.

Management

The NCCN guidelines recommend that patients with MPM be managed by a multidisciplinary team with experience in MPM. Treatment options for patients with MPM include surgery, radiation therapy (RT), and/or chemotherapy;\(^1\) select patients (clinical stages II-III, medically operable, performance status 0) are candidates for multimodality therapy.\(^17-21\) Definitive RT alone is not recommended for unresected MPM.\(^22,23\) Appropriate patients should be evaluated by radiation oncologists, surgeons, medical oncologists, diagnostic imaging specialists, and
pulmonologists to assess if they are candidates for multimodality treatment.

Pretreatment evaluation for patients with MPM includes 1) chest and abdominal CT with contrast; 2) FDG–positron emission tomography (PET); and 3) VATS can be considered if there is a suspicion of contralateral disease. The following tests are optional: 1) mediastinoscopy or endobronchial ultrasonography (EBUS) fine-needle aspiration (FNA) of the mediastinal lymph nodes; 2) laparoscopy to rule out transdiaphragmatic extension; and 3) chest magnetic resonance imaging (MRI). Staging is done using the International Mesothelioma Interest Group (IMIG) TNM staging system, which was approved by the American Joint Committee on Cancer (AJCC) (see Table 1). Pretreatment evaluation for patients with MPM includes chest and abdominal CT with contrast, FDG–PET, and VATS if there is a suspicion of contralateral disease. The following tests are optional: mediastinoscopy or EBUS FNA of mediastinal lymph nodes, laparoscopy to rule out transdiaphragmatic extension, and chest MRI.

Patients with clinical stage I-III MPM can be evaluated for surgery using pulmonary function tests (PFTs), quantitative ventilation/perfusion (V/Q) tests, and cardiac stress tests. Patients with clinical stage I MPM who are medically operable can have surgical resection; those who are not operable can be observed for progression. Patients with clinical stages II-III MPM who are medically operable can have multimodality therapy; chemotherapy alone is recommended for those who are not operable. Patients with clinical stage IV MPM or sarcomatoid histology are candidates for chemotherapy.

Surgery

Surgical resection for patients with MPM can include either 1) pleurectomy/decortication (P/D), which is complete removal of the involved pleura and all gross tumor; or 2) extrapleural pneumonectomy (EPP), which is en-bloc resection of the involved pleura, lung, ipsilateral diaphragm, and often the pericardium. The choice of surgery for MPM is controversial. EPP would often be required to remove all gross tumor in patients with stages II-III MPM. However, EPP is associated with higher morbidity and mortality; therefore, P/D may be a better option for some patients. In addition, neither EPP nor P/D will yield an R0 resection. A recent retrospective analysis (n=663) found that the type of surgery did not affect survival regardless of whether patients had early-stage or advanced stage disease. It is essential that patients receive a careful surgical assessment before surgery is done.

For patients with operable early-stage disease (stage I), P/D is recommended if a complete resection can be done otherwise EPP can be considered for patients with good performance status and no comorbidities. For patients with operable advanced disease (stage II-III), EPP is an option for those with good performance status and no comorbidities. The NCCN Panel does not recommend surgery for patients with stage IV MPM or sarcomatoid histology.

Chemotherapy

Chemotherapy is recommended either alone for medically inoperable patients with MPM or as part of a regimen for patients with medically operable MPM (see algorithm for specific regimens). Patients with stage II-III MPM can receive chemotherapy either before or after surgery. Patients with medically inoperable stages II-III MPM and those with stage IV or sarcomatoid histology should receive chemotherapy alone.
A combined first-line regimen using cisplatin and pemetrexed (category 1) is considered the gold standard for MPM and is currently the only regimen approved by the Food and Drug Administration for mesothelioma. A phase III randomized trial assessed cisplatin/pemetrexed versus cisplatin alone in patients who were not candidates for surgery; data showed that the combined regimen increased survival when compared with cisplatin alone (12.1 versus 9.3 months, $P = .02$). Other acceptable first-line combination chemotherapy options recommended by NCCN include 1) pemetrexed and carboplatin, which was assessed in 2 large phase II studies (median survival = 12.7 and 14 months, respectively); or 2) gemcitabine and cisplatin, which was also assessed in phase II studies (median survival = 9.6 to 11.2 months).

A comparison of 1,704 patients with medically inoperable MPM treated with cisplatin/pemetrexed or carboplatin/pemetrexed as part of an expanded access trial found that outcomes with the regimens were similar. The carboplatin/pemetrexed regimen is a better choice for patients with poor performance status and/or comorbidities. Acceptable first-line single-agent options include pemetrexed or vinorelbine. Second-line chemotherapy options include pemetrexed (if not administered first line), vinorelbine, or gemcitabine. There are limited data to guide second-line therapy.

Recently, trimodality therapy using chemotherapy, EPP, and hemithoracic RT has been used in patients with MPM. Median survival of 29 months has been reported for patients who complete trimodality therapy. Nodal status and response to chemotherapy can impact survival. In a small retrospective series, trimodality therapy using EPP did not improve survival when compared with patients who did not receive EPP.

Radiation Therapy

RT can be used as part of a multimodality regimen or as palliative therapy for relief of chest pain or metastases in bone or brain. The dose of radiation should be based on the purpose of treatment. The most appropriate timing of delivering RT (i.e., after surgical intervention, in conjunction with chemotherapy) should be discussed in a multidisciplinary team. Adjuvant RT is recommended for patients with resectable MPM to improve local control and to prevent instrument-tract recurrence after pleural intervention.

After extrapleural pneumonectomy, adjuvant RT significantly reduced the local recurrence rate. However, when there is limited or no resection of disease (i.e., in the setting of an intact lung), high-dose RT to the entire hemithorax has not been shown to improve survival and the toxicity is significant.

CT simulation guided planning with conventional photon/electron RT is recommended. The clinical target volumes should be reviewed with the thoracic surgeon to ensure coverage of all the volumes at risk. The total dose of radiation for adjuvant therapy should be 50-60 Gy (1.8-2.0 Gy/fraction) based on the margin status. A total dose of 54 Gy to the entire hemithorax, thoracotomy incision, and sites of chest drains was tolerated. The dose of adjuvant RT appears to significantly influence overall results. Those who receive doses higher than 40 Gy might survive longer than those who receive doses less than 40 Gy ($P = .001$). A dose of 60 Gy or more should be delivered to macroscopic residual tumors, if the doses to normal adjacent structures are limited. In addition to covering the surgical bed within the thorax, the volume of postoperative radiation should also include the surgical scars and biopsy tracks in the chest wall, although this is controversial.
Intensity-modulated RT (IMRT) is a promising technique for mesothelioma that allows a more conformal high-dose RT and improved coverage to the hemithorax at risk.22 When IMRT is used, the NCI/ASTRO IMRT guidelines should be strictly followed \url{http://www.astro.org/Research/ResearchHighlights/documents/Imrt.pdf}. Radiation to the contralateral lung should be minimized,22,60 because the risk of fatal pneumonitis with IMRT is excessively high if strict limits are not applied.61-63 The mean lung dose should be kept as low as possible, preferably less than 8.5 Gy. The volume of contralateral lung receiving low-dose RT (e.g., 5 Gy) should be minimized.64

To prevent surgical tract recurrence after surgical procedures, the recommended prophylactic radiation dose is a total dose of 21 Gy (7 Gy in 3 fractions).54,56 Some investigators have treated patients with residual tumors using brachytherapy or intraoperative external-beam RT in combination with surgery.

Daily doses of 4 Gy appear to be more efficacious than fractions of less than 4 Gy in providing relief from chest pain associated with mesothelioma,54,55 although the optimal daily and total dose of RT for palliative purposes remain unclear.
References

NCCN Guidelines™ Version 1.2011
Malignant Pleural Mesothelioma

